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RELATIONS BETWEEN RESPONSE AND FOURIER SPECTRA
OF SHOCK FUNCTIONS

VICTOR A. JENSCHKE

University of California, Los Angeles

Abstract--Using the running Fourier transform technique for solving the equation of motion it is found that
velocity and pseudo-velocity response spectra of shock functions are bounded above and below by the amplitude
and Fourier spectra respectively. The gap between bounds and spectra is assessed in a numerical example.

INTRODUCTION

A FUNCTION s(t) defined in - 00 < t < 00 by

t < a
a :s; t :s;b
t> b,

(1)

where f(t) is integrable over (a, b) in the Riemann ~~nse, is referred to herein as a shock
function. The intervals t < a a :s; t :s; b, t > b indicate respectively the initial, forced
and free eras ofthe shock function. Shock functions are an extension of the class offunctions
called simple pulses [1]. The facts justifying the definition of shock function are, first, that
a great majority of forcing functions considered in shock do satisfy definition (1), and,
second, that important properties of these forcing functions are just consequences of this
definition.

It is evident, for instance, that any shock function possesses a Fourier transform.
The Fourier transform of a shock function s is denoted herein by

Fs(u) = f~oo s(r)e- iUr dr. (2)

It is also evident that any shock function has a running Fourier transform [2]. The
running Fourier transform of a shock function is equal to

Fs(t, u) = foo s(r)e- iur dr. (3)

The Fourier spectrum and running Fourier spectrum are defined respectively as the
absolute value of the corresponding transforms.

Consider a linear single degree of freedom system which equation of motion is

(4)
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Here s is a shock function, w 2 > 0, A. 2 °and the initial conditions are homogeneous
and given at time to S a, namely,

x(to) = X o = 0

x(to) = Vo = o.
(5a)

(5b)

It is clear that for any shock function equation (4) with initial conditions (5) has a
solution which can be expressed in terms of the well known convolution integral

x(t, w) = J' s(,)h(t - ,) d,
III

(6)

where h(t) is the unit-impulse response of equation (4).
The displacement, velocity, pseudo-velocity and pseudo-acceleration response spectra

of s are defined respectively by

Sx.iw) = suplx(t, w)1
I

Si;,.,(W) = suplx(t, w)1
I

S*.,(w) = wSx.s(w)

S".iw) = w 2Sx.s(w).

(7)

(8)

(9)

(10)

(II)

Existance, uniqueness, boundedness and continuity properties of the functions defined
by equations (2), (3) and (6HlO) are direct consequences of the definition of shock
function.

In this article the relations existing between response and Fourier spectra are derived
in the context of shock functions. For this purpose it is particularly indicated to solve
the equation of motion using the running Fourier transform. Apparently the running
Fourier transform has not been used for solving differential equations. A novel feature of
this technique is that instead of the inversion step, required by ordinary Fourier or Laplace
transforms, which reduces the problem to contour integration, the running Fourier
transform requires solving a system of simultaneous linear algebraic equations. This study
is restricted to relations between Fourier and response spectra in undamped linear single­
degree-of-freedom systems. Therefore undamped response spectra are referred to herein
shortly as response spectra.

RELATIONS BETWEEN FOURIER SPECTRA AND THE SOLUTION OF THE
EQUATION OF MOTION

If A. is set to be equal to zero, equation (4) is the equation of motion of an undamped
linear single-degree-of-freedom system. Applying definition (3) to equation (4) gives

J' xe-iut dr+w2 J' xe- iut d, = 5' se- iut d, = Fit, u).
to to to

Integrating by parts and using initial conditions (5)

(x+iUX)e-iUI+(w2_U2)S' xe-iUtd, = Fs(t,u).
to

(12)
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Substitute roots of equation u2
- w 2 = 0 into equation (12)

x+iwx = e-iWIFs(t, w) (l3a)

x-iwx = e-iwtFs(t, -w). (l3b)

This is a system of two simultaneous linear equations in the unknowns x and x having a
non zero determinant. Thus x and xare uniquely determined.

Multiply equation (13a) by equation (l3b) and divide the result by 2

ix 2 +iW2
X

2 = ilFs(t, w)1 2
. (14)

Equation (14) establishes a relation between the running Fourier spectrum of sand
the solution of equation (4). For a fixed mechanical oscillator with unit mass, equation (14)
is a statement of the principle of conservation of mechanical energy in which the total
energy appears as an integral of motion. The sum of potential and kinetic energy is equal
to half times the square of the running Fourier spectrum. Obviously, the right hand side
of equation (14) is equal to the work done by the external force s from time t = - CfJ to
time t.

For t ;:::: b it follows from definitions (1)--(3) that

F,(t, w) = Fs(w),

Thus, for t ;:::: b equations (14) and (15) give

ix2 +iW2
X

2 = iIFs(w)1 2
,

t ;:::: b.

t ;:::: b.

(15)

(16)

Equation (16) states that the total energy of the oscillator in the free era is equal to half
times the square of the Fourier spectrum of s.

AMPLITUDE SPECTRUM

The running Fourier transform defined by equation (3) can be written as

F,(t, w) = As(t, w)e-i<!>s(t.W) (17a)

where

and
A,(t, w) = IFs(t, w)1 (17b)

(17c)A.( )_ -1 {_ImFs(t,W)}
'f's t, w - tan .

Re Fs(t, w)

A,(t, w) and cPs(t, w) are referred to respectively as the running amplitude and the running
phase of the shock function s.

The amplitude response spectrum of a shock function is defined herein as

SA..(W) = sup As(t, w).
t

(18)

In account of equations (14), (17b) and (18), is~.,(w) is equal to the maximum energy
per unit of mass delivered by the shock function into a fixed oscillator of frequency w,
whereas from equations (8), (9) and (14) iSl..(w) and isj..(w) are respectively equal to the
maximum kinetic and maximum potential energy per unit of mass delivered by s into the
same oscillator.
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It is interesting to notice that the anplitude spectrum of any shock function is bounded
for any frequency including the limit values w = 0 and w = 00. This means that any shock
function delivers a finite amount of energy into any single-degree-of-freedom system
including the limit, but possible, systems consisting of a single mass or a single spring.
It is also a property of shock functions that boundedness of the pseudo-acceleration
spectrum for any frequency, including the referred limit systems, insures the force in the
spring to be always finite.

UPPER AND LOWER BOUNDS FOR RESPONSE SPECTRA

A. Upper bounds

Replacing equation (17a) into (13a) and separating real and imaginary parts

x = Ait, w) cos[wt - cPit, w)]

wx = As(t, w) sin[wt - cPs(t, co)].

From equations (8), (18), (19a) and equations (9), (18), (19b) it follows

Sx,s(co) = suplxl ~ sup Ait, w) = S4,s(W)
t t

Si,,,(W) = suplwxl ~ sup A,(t, w) = S4.s(W).
t I

(l9a)

(l9b)

(20a)

(20b)

Equations (20) show that velocity and pseudo-velocity spectra are bounded above
by the amplitude spectrum.

B. Lower bounds

Consider equations (19) for t 2': b. In account of equations (1), (3), (15) and (17) equations
(19) can be written as

t 2': b

t 2': b.

x = IFs(w)lcos[wt-cPs(b, w)],

cox = IF'(w)1sin[wt - cPs(b, w)],

From equations (8), (21a) and (9), (21b) it follows:

Si,s(W) = suplxl 2': suplxl = IFs(w)1
t t'2:.h

S;:,,,(w) = suplwxl 2': suplwxl = 1F,(w)l·
t t>b

(2Ia)

(2Ib)

(22a)

(22b)

Equations (22) show that velocity and pseudo-velocity spectra are bounded below by
the Fourier spectrum of s.

From relations (20) and (22) it follows that if

then

IF'(w)1 = SA,s(W) (23)

(24)

Therefore, equality between Fourier and amplitude spectra is a sufficient condition for
equality of velocity and pseudo-velocity spectra.
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ILLUSTRATIVE NUMERICAL EXAMPLE

This numerical example was calculated in a digital computer using a program written
by the author. The purpose was to obtain a numerical estimate in a particular case on how
close to velocity and pseudo-velocity spectra were the values of the upper and lower bounds
given by equations (20) and (22). The chosen function shown in Fig. 1 is a portion of the
S80E component of the ground acceleration recorded at Golden Gate Park in the earth­
quake of 22 March 1957. The amplitude, velocity, pseudo-velocity and Fourier spectra
are given in Fig. 2. The upper curve is the amplitude spectrum and the lower curve is the
Fourier spectrum.
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FIG.!. San Franciso Earthquake of 22 March 1957 recorded at Golden Gate Park component S80E.

Results of this example can be summarized as follows: The upper bound shows consis­
tently very close values to both velocity and pseudo-velocity spectra for all frequencies
with the exception of frequencies below 12 rad./sec. In this later interval the upper bound
remains very close to the velocity spectrum only. The lower bound is close to velocity or
pseudo-velocity spectra only in some selected frequency intervals. For the remaining
frequencies the lower bound differs considerably from the other spectra. At ()) = 53 rad./sec,
for instance, the lower bound is less than i the values of response spectra.

CONCLUSIONS

Relations between response and Fourier spectra are investigated using the running
Fourier transform for solving the equation of motion. A novel feature of this technique
is that the problem of solving a differential equation is reduced to the solution of a system
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FIG. 2. Velocity and pseudo-velocity spectra bounded above and below by the amplitude and Fourier
spectra.

of simultaneous linear equations, instead of the inversion step required by ordinary
Fourier or Laplace transforms. This technique is particularly indicated herein for establish­
ing a relation between the running Fourier spectrum and the solution of the equation of
motion. Through the running Fourier spectrum the amplitude spectrum is defined.
The amplitude spectrum is a measure of the maximum energy which a shock function can
deliver into a fixed linear undamped single-degree-of-freedom system.

Upper and lower bounds for response spectra are given, namely, velocity and pseudo­
velocity spectra are bounded above and below by the amplitude and Fourier spectra
respectively. A numerical example indicates, for the particular shock function of an earth­
quake acceleration, that the upper bound provided by the amplitude spectrum is consider­
ably closer to velocity and pseudo-velocity spectra as compared with the lower bound
given by the Fourier spectrum.
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A6cTpaKT-J,1cnOJlb1Yll MeTOD, nepeMeHHoro npeo6pa1oBaHIHI <l>ypHe D,Jlll peweHHlI ypaBHeHl1l1 D,BHlKeHHlI
oKa1blBaeTClI, 'ITO cneKTpbI xapaKTepl1CTHK CKOpOCTI1 11 nCeBD,O-CKOPOCTI1 !\IyHKUHH yD,apa OrpaHI1'1eHbI
oBepxy 11 CHI11Y, COOTBeTCTHeHHO, aMnJlHTyD,OH 11 CneKTpaMI1 <l>ypbe. Ha '1I1CJleHHOM npHMepe onpeD,enlleTClI
I1HTepBaJl MelKD,y npeD,enaMI1 11 oneKTpaMI1.


